Echinacoside stimulates cell proliferation and prevents cell apoptosis in intestinal epithelial MODE-K cells by up-regulation of transforming growth factor-β1 expression.
نویسندگان
چکیده
Cistanche deserticola MA (C. deserticola) has been widely used as a laxative herbal in herbal medicine for the treatment of irritable bowel syndrome or constipation, and echinacoside (ECH) is one of the major bioactive ingredients in this herbal. Our aim was to investigate the effect of ECH on intestinal epithelial cell growth and death. MODE-K, an intestinal epithelial cell line, was used as an in vitro model of the intestine. Cell proliferation was measured by methylthiazol tetrazolium (MTT) assay. Cell apoptosis was determined with Annexin-V staining. Here we showed that in cultured MODE-K cells, ECH significantly stimulated cell proliferation and enhanced cell survival by reducing cell apoptosis in the presence of H(2)O(2) or the mixture of pro-inflammatory cytokines, while transforming growth factor (TGF)-β1 expression was up-regulated in a dose-dependent manner. Knockdown of TGF-β1 expression disrupted both the proliferative and cytoprotective activities of ECH, which was further confirmed by neutralization of TGF-β1 activity using anti-TGF-β1 antibody. These data suggest that ECH as one of bioactive ingredients in herbal C. deserticola and others may improve mucosal tissue repair by stimulating intestinal epithelial cell proliferation and preventing cell death via up-regulation of TGF-β.
منابع مشابه
Human Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملEffect of Transforming Growth Factor-β (TGF-β) on proliferation of gastric epithelial cells in culture
Objective: Helicobacter pylori has a well-established role in the development of gastric cancer. In vitro studies reveal increased proliferation of the gastric mucosa in the presence of H. pylori infection. It has been also shown that production of some cytokines, such as interleukin-1 beta (IL-1b) is in...
متن کاملA novel treatment approach for retinoblastoma by targeting epithelial growth factor receptor expression with a shRNA lentiviral system
Objective(s): Non-invasive treatment options for retinoblastoma (RB), the most common malignant eye tumor among children, are lacking. Epithelial growth factor receptor (EGFR) accelerates cell proliferation, survival, and invasion of many tumors including RB. However, RB treatment by targeting EGFR has not yet been researched. In the current study, we investigated the effect of EGFR down-regula...
متن کاملComparison of the efficacy of Piascledine and transforming growth factor β1 on chondrogenic differentiation of human adipose-derived stem cells in fibrin and fibrin-alginate scaffolds
Objective(s):The aim of this study was to compare the chondrogenic induction potential of Piascledine and TGF-β1 on adipose-derived stem cells (ADSCs) in fibrin and fibrin-alginate scaffolds. Materials and Methods: Human subcutaneous adipose tissues were harvested from three patients who were scheduled to undergo liposuction. Isolated ADSCs were proliferated in a culture medium. Then, the cell...
متن کاملMammalian Target of Rapamycin (mTOR) Regulates Transforming Growth Factor-β1 (TGF-β1)-Induced Epithelial-Mesenchymal Transition via Decreased Pyruvate Kinase M2 (PKM2) Expression in Cervical Cancer Cells
BACKGROUND Epithelial-mesenchymal transition (EMT) plays an important role in cancer tumorigenesis. Transforming growth factor β1 (TGF-β1) can induced EMT, which could increase tumor migration and invasion. Moreover, recent studies have been proven that mammalian target of rapamycin (mTOR) is a critical regulator of EMT. We investigated the mechanisms of mTOR in transforming growth factor β1 (T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of pharmacological sciences
دوره 118 1 شماره
صفحات -
تاریخ انتشار 2012